e

C

UNIVERSITAT
JAUME-1

ONCURRENCY

N UNITY

>~

INDEX

CONCURRENCY, WHAT IS IT?

COROUTINES
WHAT ARE THEY?
HOW TO IMPLEMENT THEM

THREADS
WHAT ARE THEY?
HOW TO IMPLEMENT THEM

JOBS
WHAT ARE THEY?
HOW TO IMPLEMENT THEM

WHICH OPTION IS BEST?

(9,

1
11
13

20
20
23

28

CONCURRENCY,
WHAT IS IT?

As a starting point for this document, it is important
to know that concurrency is the ability of different
parts of a program or algorithm to be executed in a
disorderly or partially ordered way, but without
affecting the final result of the program.

These calculations will be executed on the different
processors of the computer by using different threads of
execution.

In this way, it is possible for the different threads of
execution to interact with each other while they are
running.

Concurrencia Concurrencia

Search 1 Search 3

Search 2 Search 4

Join results

However, this poses a problem, as having different
paths of execution results in the final outcome of the
program being completely indeterminate.

This means that the execution order of these threads
cannot be determined with certainty (in what order they
act, which ones finish first, which is the last thread to
act, etc.), leading to errors such as race conditions,
mutual deadlocks, or starvation problems that must be
resolved by the programmer to ensure proper
functionality of the implemented code.

Throughout this document, the different ways of
applying concurrency in Unity, their advantages and
disadvantages, will be thoroughly discussed starting
from a basic to intermediate level of Unity.

After applying concurrency in Unity (only when
necessary, as using it in areas where the data processing
is very low will achieve the opposite of the objective
since the cost of creating multiple processes will be
greater than the benefit obtained by treating them
concurrently), a great optimization of the proposed
code will be obtained through different structures
and/or methods, which will be processed on different
CPUs to achieve faster execution.

To achieve this, Unity provides three different
mechanisms that each programmer can use in their

project:

1-. COROUTINES

2-. THREADS

3-.JOBS

COROUTINES

WHAT ARE THEY?

Firstly, we will start by discussing coroutines, how
they work, how they are applied, and what benefits they
can bring to the code once implemented correctly and
efficiently.

Normally, when a function is executed, everything that
happens inside it will occur within the same "frame
update," causing different outcomes than expected on
various occasions since a sequence of events cannot
occur over time, but will occur within the same frame as
quickly as possible.

Let's say, for example, that the user wants to gradually
reduce the opacity (alpha) of an object until it is
completely transparent. For that, a function like the
following would be used:

void Fade ()
{

for (flecat £t = 1f; ft >= 0; £t = 0.1f)

{
Color clr = gameCbject.material.cclor;
clr.a = f£ft;
gameObject.material .color = o;

}

The expected result is the gradual reduction of the
material's alpha of the object. However, after executing
this function, the object will go from being visible to
being transparent in a single frame.

This is where coroutines come into play, providing a
simple solution to the problem.

A coroutine is a function that can pause its execution
and return control back to Unity before finishing,
thereby allowing it to act in the background while the
program continues to execute the main method.

The correct way to apply a coroutine to the code
described above is:

- Change the function type to a coroutine by replacing
"void" with "lIEnumerator”.

- Use "yield return" and the amount of time you want
to pass.

The resulting code would be:

IEnumerator Fads ()

{

for (fleat £t = 1£f; £t >= 0; ft —= 0.1f)
{
Coloer ctr = gameObject.material.color;
ctr.a = ft;
gameCbject. .material .color = &;
¥ield return null;
}

]
; Another
| Coroutine s, ’7 cperation

—

I
StartC oroutinel Coroutinel) ;

yield return
null;

e

COROUTINES

HOW TO IMPLEMENT THEM

It's important to know that coroutines don't work like
normal functions because they don't return floats,

strings, booleans, etc.
Instead, they return an IEnumerator, a .NET type

variable used to pause iteration.

IEnumerator Fade ()

{

for (fleoat £t = 1£f; £t >= 0; £t —= 0.1f)
{
Color ¢ = renderer.material.color;
c.a = ft;
renderer.material .color = o;

vield return null;

And now the different functions that can be used with
coroutines are going to be explained:

- StartCoroutine(): Once the coroutine has been
created, it must be called from the main code using
StartCoroutine to work.

void Update ()

{
if (Input.GetKeyDown ("f£"))
{

StartCoroutine ("Fade") ;

// resto del codigo....

This way, the "Fade" coroutine will be activated after
pressing the F key, which, upon reaching "yield return
null", will return control to the main program while
executing as a for loop with one iteration per frame
(without causing errors due to the safe and correct
handling of the parameters of that "for loop" between
yields).

- WaitForSeconds: Suspends the coroutine for a
specified amount of time. It is applied when we want
to extend the effect of a coroutine over time.

IEnumerator Fade ()

{

for (float £t = 1f; ft >= 0; £t —= 0.1f)
{
Color o = renderer.material.color;
a.a = ftt;
renderer .material .color = o

vield return new WaitForSeconds(.1f) ;

In this way, the object will take longer to become
transparent, as it will wait 0.1 seconds between each
iteration of the loop instead of executing on every
frame, while the main code continues to run normally.

This shows how coroutines have a fundamental use in
optimizing code efficiently.

Applied to the realm of videogames, there are
numerous tasks that must be carried out periodically or
continuously, and they should be included in Update()
(which runs several times per second). However,
sometimes, even though periodic execution is desired, it
is necessary that it occurs less frequently or even at
different times.

A task that meets these requirements could be the
following, which checks if the player has entered the
danger distance with an enemy:

function ProximityCheck()

{

for (int 1 = 0; i1 < enemies.Length; i++)

{

if (Vector3.Distance (transform.position,
enemie=s[i] . transform.pesition) < dangerDistance) {

return true;

return false;

As it is a function that doesn't need to be updated
every frame since the player doesn't move so fast,
instead of adding it to the Update function, a coroutine
will be created to carry it out:

IEnumerator DoCheck ()

{
ford: ;)
{
ProximityCheak () ;
wield return new WaitForSeconds=s (.1f) ;

By calling the "DoCheck()" coroutine in the code, the
ProximityCheck() will be checked every 0.1s, freeing the
game from doing a large amount of checks every frame
without any significant impact on the game. If it had
been in the Update function instead of being a
coroutine, all those checks would have only slowed down
the game, since they were checks that wouldn't have had
an effective impact on the game, as the player doesn't
move fast enough for that check to be performed every
frame.

Other coroutine-related functions that the programmer
should know or be aware of when applying them are:

- StopCoroutine(): Stops a specific coroutine. It is
used in the same way as StartCoroutine(), being
included in the main program.

- StopAllCoroutines(): Disabling all coroutines of a
GameObject. If a GameObject is directly disabled, all

its coroutines will also be disabled, but doing it that
way can lead to errors, so it is better to use this
method.

- Yield return null: Suspends the coroutine to resume

it on the next frame. This has the same functionality
as WaitForSeconds, except that here there won't be a
specific amount of time waited between iterations,
but rather when one iteration finishes, the next one
will continue immediately without any delay.

THREADS

WHAT ARE THEY?

Like coroutines, threads are another way that Unity
has to achieve concurrency. We will proceed to explain
how they work and what benefits they have.

Firstly, and unlike <coroutines, threading takes
advantage of the multicore structure that modern CPUs
have by which they can perform two or more tasks
concurrently and efficiently.

Using threading in Unity allows for taking advantage
of multicore CPUs to perform two or more tasks
concurrently and efficiently, which is unlike using
coroutines. Threading allows for performing very
complex calculations by offloading them to other CPUs
in the background while keeping the user interface
active and responsive to the player. Threading is also
used to perform the same task using different
algorithms and compare their effectiveness.

Another characteristic of threading is dividing a very
long task into smaller tasks, executing them separately
with different threads on different CPUs and using
shared memory, and finally merging them all together to
display the final result.

Physical memory
memory mapping
| 00 memory Space 0= 3000 MEMoy Space
'y
Process 1 Process 2
Thread 1 Thread 2 Thread 1 Thread 2
=Stack =Slack «Stack =Slack
*Registers *Registers *Registers *Registers
PC PC PC PC
I * I |
Y _ Y L
| Thread scheduler (OS) |
L Y

| Processor Processor ‘

And what does using threading or multithreading
bring to Unity? Thanks to threads, a video game can
significantly increase its FPS, since threads allow for a
more structured calculation of operations, thus
achieving a very significant benefit in the smoothness of
the game, which should be a primary objective for every
programmer when programming a video game.

Despite of that, using threads and threading can
compromise the proper functioning of the program, so it
is necessary to have a clear understanding of their use
and application.

One of the properties of threads is that they use
shared memory for all threads, and that can lead to
unexpected behaviors if the appropriate precautions are
not taken when accessing or modifying that memory,
known as race conditions.

Therefore, any threading operation must be well
protected and secured.

And before continuing and to conclude this section, it
is necessary to talk about the Unity API.

The Unity API collects all those objects or methods
that are imported through Unity Engine, Unity Editor,
Unity or Other, which are the spaces provided by Unity
to work with its engine. One of its main characteristics
is that it is not Thread safe, meaning that it is not safe
to apply Threads in it. Therefore, references such as
transform.position or using the different components
that a GameObject can have in Unity (Colliders, Sprite
Renderers...) cannot be used for multithreading, as
those parameters are not accessible by different threads
(only by the "main thread") and therefore cannot be used
to carry out calculations or operations.

¥ V' Box Collider

Add Component

Add Comp

THREADS

HOW TO IMPLEMENT THEM

To apply threading in Unity, unlike coroutines that do
not require any namespace, the use of threads and
multithreading in Unity requires first:

- Threading namespace: to use it we import it at the
beginning of the script using the following code
shnippet, thus being able to use all the functions
specific to threads.

u=zing System:;

u=sing System.Threading;

- Creating a thread: It is important that threads are
all created from the main thread to avoid any errors.
In this example, two threads are created and each one
is assigned a different task (which will be a function)
to carry out separately, as we can see in the following
code fragment:

Thread ThreadOne = new Thread(Workl) ;
Thread ThreadTwo new Thread(Work?) :

wvold Workl ()
{
for(int i = 1; i <=10; i++)

{

Debug.Log ("Werk 1 is called " + i.ToString()) ;

void Work? ()
{

for (int 1 = 1; i <= 10; i++)

{

Debug.Log("Werk 2 iz called " + i.ToString()) ;

If we call the functions separately, the output of the
program would be the work 1 function printing numbers
from 1 to 10 first and then the work 2 function doing the
same.

- Thread.Start(): used to initiate the work of a thread
once it has been created:

Thread ThreadOne = new Thread (Workl)
Thread ThreadTwo new Thread (Work?)

ThreadOne.Start () ;
ThreadTwo.Start () ;

[Ny

This is the result that would be
obtained if threads are used instead of
making the functions iteratively:

1_.
|

2 e e

B ek B
P B

But it's not enough to just start a thread and give it a
task, you also need to know how to use certain methods
to handle those threads and make them work properly.

You can also force a thread to finish executing
quickly or abort the execution of a thread because it is
no longer needed to continue running. Below are the
methods that allow the programmer to perform these
functionalities.

- Thread.Join(): method used to make a particular
thread finish its work or to make the rest of the active
threads stop until the thread in question has finished
its work.

It also causes the thread to which it is attached to run
first, before the others.

Thread ThreadOne = new Thread (MethodJoin) ;
ThreadOne.Start () ;

ThreadOne . Join () ;

Debug.Log ("Work completed!"™) ;

s=tatic void Methoddoin ()
{
for (int 1 = 0; i <= 10; i++)
{
Debug.Log ("Work in progress...");

And the result obtained will be this:

i completed. .t

This way you can check how, by doing ThreadOne.Join(),
the main thread stops (since it does not print "Work
completed"), since, as explained earlier, by doing
Thread.Join() priority will be given to that thread and

until it finishes the rest will be frozen without
advancing, and once this thread finishes, the execution
of the rest of the threads will resume as quickly as

possible.

- Thread.Sleep(): as its name suggests, it will sleep
(suspend) the thread for a specific interval of time,
which can be specified in milliseconds or as a time
interval. By suspending a thread, it will not consume
CPU resources, so indirectly, memory is saved to be
used in other threads being processed.

Stopwatch stWatch = new Stopwatchi() ;
stWatch. Start () ;

Thread ThreadOne = new Thread(ProcessSleep)
ThreadOne . Start () ;
ThreadOne . Join () ;

stWatch. Stop () ;
TimeSpan ts = =tWatch.Elapsed;

gstring <lapsed Time = String.Format("{0:00}:{1:00}:{2:00}",
t=.Hours, ts.Minutes, t=.Seconds)

Conscle . Writeline ("TotalTime " + elapsedTime) ;
Conscle WriteLine ("work completed. .l™);

static wold ProcessSleep ()

{
for (int i = 0; i <= 5; i++)
{

Con=cle . Writeline ("work i=s in progress..1");
Thread.Sleep (4000) ; //Sleep for 4 seconds

is in progress..!?
iz in progress. .t

And the output of the program : is in progress..!
. . . 15 1n progress. ..
would be as seen in this image: work is in progress..!

work iz in progress..t
TotalTime AH:BA:24
work completed..?

And so, every time the "work in progress..!" message is
printed, it will wait for 4 seconds until the next iteration
of the Iloop is performed, since after printing the
message the thread sleeps for 4 seconds; and until this
thread finishes, the main thread won't resume, so the
"work completed..!" message doesn't appear.

- Thread.Abort(): it terminates or aborts a thread so
that it cannot continue to execute. What it does is to
produce a "ThreadAbortException" exception in the
thread that has been aborted so that the main thread
initiates the termination of the aborted thread.

TreadOne . Abort () ;

The threadpool is also important to know and how to
control it.

What a threadpool does is keep numerous threads
waiting for a task assignment to be placed by the
program and work concurrently.

This way, it increases the execution capacity and
avoids latency in execution thanks to the creation and
destruction of threads for short and low-duration tasks.

It is applied as follows; first, all the inputs or variables
needed by the function to be executed in the multiple
threads are saved into a variable; and second, the
threadpool is called.

var threadlnput = ...; // Variables para la funcion

ThreadPocl.QueuselUserlorkItem (ThreadFuncion, threadlInput) ;

As can be seen, when calling the threadpool, it is not
necessary to create the different threads one by one. The
only thing that needs to be done is to enqueue the
function to be executed with threads within the
threadpool along with the necessary variables, and the
threadpool itself will take care of using the necessary
threads to carry out that function.

Therefore, we can conclude that using a threadpool is
more efficient than using threads separately since there
is no execution time spent creating threads one by one,
and it allows for reuse of threads if necessary, ensuring
that there is never a limit on the available threads.

Now the reader may wonder, how can we improve
threading security?

The solution comes from a tool called locks, which
ensures that the shared information between threads is
not altered erroneously.

However, just using a lock will not guarantee
threading security; it is necessary to identify the critical
information that will be accessed and/or modified by the
different threads and, once known, activate the lock
before accessing or modifying it and then disable it after
leaving the critical zone.

In this way, it is ensured that only one thread accesses
or modifies such information at the same time, avoiding
race conditions, so a clear idea of the code's functioning
is heeded.

In this code snippet we can observe an incorrect use
of locks, as it still leads to a race condition, where in
some cases "X times y is 1" will be printed and in other
cases "x times y is 0", because what is achieved now is
that the main thread and the new thread "compete" with
each other to see who reaches the lock first, but it does
not ensure that the results obtained are accurate.

public class NotLockedThread : MconoBehawicur {

float x 1f;
float y = 0f;

private static readonly object Lock = mew cbject() ;

wvold Start () {
new Thread (Multiply).Start():;

lock (Lock) {
Debug.Leg (“Main thread gets first”);
y += 1f;
i
Multiply () ;
i

wvoid Multiply () {
lock (Lock) {
Debug.Log (“Secondary thread gets first”);

Debug.Leg (“x times y is " + x*y):;
y = x*y;

To implement locks, you should start by creating a
special variable of type readonly (we are interested on it
being read-only) to control when a code zone is or is not
blocked for the rest of the threads.

After that, it is necessary to evaluate which will be the
critical information that different threads will access in
order to use the lock variable, blocking its entry when a
thread makes use of it, and releasing its use once the
thread stops accessing or modifying said information.

calass Program USING LOCKS:

{
static readonly cbject locked = new object();

=tatic void PrintInfo ()
{
lock (locked)
{
for (int i = 1; i <= 4; it+)
i
Debug.Leg("i walue: {0}", 1i};
Thread.Sleep (1000}

}

void Start

{
Thread tl = new Thread(new ThreadStart(FrintInfo)) ;
Thread t2 = new Thread (new ThreadStart (PrintInfo)) ;

kl.Start{};
t2.5tart () ;

And the output provided by the program will be above
next the code. Indeed, the two threads have not been
printed at the same time, since thanks to the lock, one
thread has accessed the entire block of code first and
then the other.

If there had not been a lock, the output would have
been as shown below, since both threads would have
been executed at the same time, and they would have
accessed the same function without waiting for the
other to finish.

CONCURRENCY IN UNITY

JOBS

WHAT ARE THEY?

And finally, we are going to explain and delve into
jobs, what they are, and how the Job System works in C#
and therefore in Unity.

The Unity C# Job System allows the programmer to
write and safely apply multithreading that interacts
with the Unity Engine for superior game quality.

The Job System is commonly used together with ECS
(Entity Component System), an architecture that makes
it easier to write code that works across all platforms.

In ECS, the E refers to entities, the objects that make
up the game, the C refers to components, the variables
associated with entities, and finally the S refers to
systems, the logic that transforms component data from
one state to the next (moving entities, changing their
speed, etc.).

A VIFFERENT PARAPIGM 5“‘"‘"‘: ARE
OF WRITING CODE, WHERE INPICES.
WE HODEL OUR PROGRAMS THE ENTITIES
IN A DATA DRIENTED WAY,

THE SYSTEMS QUERY ONLY THE MULTITHREADING
(OMPONENTS THEY NEEP AN 1 BECOME ERSIER.
TRANSFORM THE PATA, THIS 1
VERY FAST SINCE THE MEMORY
LAYOUT 16 NEATLY ORGANIZED,

JOBS. WHAT ARE THEY? -- 20

The Unity Job System manages multithreading using
jobs instead of threads. A job is a structure, a small
unit of work that performs a specific task, receives
certain parameters, and performs operations with them,
similar to how standard functions work.

The important difference is not what jobs are per se,
but how the Job System directs them. The Job System
directs groups of jobs to the different cores of the
computer, along with a worker thread for each logical
CPU that exists, responsible for avoiding the famous
"context switching" problems. In addition to having a
worker thread for each CPU, the Job System queues all
jobs to be executed, and the worker threads of each
CPU pick up the jobs that are in the queue and execute
them, directing the different job dependencies and
ensuring that they are executed in the correct order.

Bullet Flayer Enemy
Entlty ‘ Render | Rends | | Render |
Entity ‘ Positior | | Positic | | Positior |
Component oaa
| Spawnlng | | Health | | Health |
System
I] |;
r System Health System
v ! -
Some complex Some complex Some complex
parallelized parallelized parallelized
behavior behavior behavior
Fender Job Health Job Spawning Job

Dependencies between jobs occur when one job
depends on another to be executed or completed.

In this way, for example, if there is a jobA that
depends on jobB to finish, the Job System ensures that
jobA is not started until jobB has finished, avoiding
many common errors that can arise from
multithreading.

As previously mentioned, another major problem with
using multithreading is race conditions, which often
cause bugs in many video games. These are difficult
problems to fix because they depend on the code and
the order in which each thread executes, making race
conditions, as mentioned earlier, a significant problem.

For example, suppose a job sends a reference to some
common data from the main thread to the current
thread. Since it is common data, it cannot be verified if
when reading the necessary data, another thread s
modifying it at that moment, causing a race condition
and sometimes resulting in unexpected results.

The Unity C# Job System detects all potential race
conditions and protects the programmer and program
from any potential bugs they may cause. What the C#
Job System does to solve this is, instead of sending a
reference to the main thread's data to the different jobs,
it sends a copy of that data, so the data is completely
isolated and will not undergo any modifications, thus
eliminating the race condition.

JOBS

HOW TO IMPLEMENT THEM

Jobs, just like threads, also need their own namespace
to be imported at the beginning of the script in order to
use them and their characteristic methods.

u=sing UnityEngine;

u=sing UnityEngine.Jobs;

Jobs are structures, and as structures, they inherit
from an interface, in this case 1Job. By creating a
structure and making it inherit from |IJob (thus creating
a job), that individual job can be executed concurrently
with other jobs and the main thread.

First of all, to create a job you need to:
- Create a structure that implements or inherits
from 1Job.
- Add the variables that the job will use (the result
variables must be stored in variables of type
NativeContainer, which will be explained below).
- And finally, create a method within that job
structure called "Execute" with the task that the
job will carry out when executed.

That being said, it should be noted that when a job is
executed, the "Execute" method will be carried out once
on a single CPU.

public struct MyJolk : IJob

{
public fleoat a;

public fleat b;
public Nativelrray<fleoat> result;

public weoid Execute ()
{

result[0] = a + b;
H

It should be noted that the downside of solving race
conditions in this way is that not only does it use more
memory than threads, but also, by copying variables for
each job, it causes them to be somewhat isolated. This is
where NativeContainer variables come in, which are a
type of shared memory. A NativeContainer variable is a
variable that provides relative safety in C# for being a
type of shared memory. When used with the C# Job
System, what the NativeContainer variable does is allow
the job to access shared information with the main
thread instead of working with a copy. There are
different types of NativeContainer variables (NativeArray,
NativelList, NativeQueue, etc.), but they all have the same
purpose.

The way in which the safety of these variables that use
shared memory is guaranteed is that everything that is
read and written from a NativeContainer is registered
and evaluated with the DisposeSentinel and
AtomicSafetyHandle <classes, two classes that are
automatically used by NativeContainer variables.

DisposeSentinel automatically detects any memory
leaks that occur at any time, so these variables will
always be monitoring to ensure that no memory leaks
occur, and if they do occur, it will display an error to the
programmer.

AtomicSafetyHandle verifies when two jobs are
accessing the same NativeContainer variable at the same
time and throws an exception with a clear error message
stating why the error occurred and how to fix it, thus
providing a validation of the system and complete
safety.

It should also be noted that when a job has access to
a NativeContainer variable, it is given both read and
write access, which can slow down +the execution.
Additionally, the C# Job System does not allow the
programmer to schedule a job that has write permissions
to a NativeContainer variable while another job s

writing to that variable.
That is why, if a job is not going to need to write or

modify a NativeContainer variable, it is best to mark it
with the ReadOnly attribute:

[ReadOnly]
public Nativelrray<int> input;

In this way, the C# Job System allows that job to
execute at the same time as other jobs that also have a
read-only access to that same NativeContainer variable
(in this case NativeArray).

After creating the job (mentioned above), you need to
follow three steps:

- Instantiate the job (meaning creating a new job

structure).

- Populate the job variables, meaning give them

values so that the job can execute.

- And finally call the Schedule() method.

- Schedule(): adds the job to a queue of jobs that are
waiting to be executed when it is their turn; once a
job has been scheduled it cannot be interrupted in
any way. It should be noted that the Schedule()
method can only be called from the main thread, as it
is responsible for organizing the execution of all jobs.

// Aqui se almacenara el resultado del job
// El 1 hace referencia a la longitud del array
// Sera 1 ya que sclo almacenamos un resultado aqui
NativeBrray<float> resultado =
new NativeBrray<float>(1l, Allocator.Tempdob) ;

// Creamos y preparamos el job para su ejecucién
MyJob jobData = new MyJdob() ;
jobData.a = 104

jebData.b = 10;
jobData.resultado = result;

ff Lo programamos para gue se ejecute

JobHandle handle = jcbData.Schedule() ;

// Bsperamos a que se complete =l job

/! Complete() es una funcién similar a Join() en los
threads

handle.Complate() ;

I/ Le asignamos el resultado a una variable nueva
float aPluskE = resultads[0];

// ¥ liberamos la memoria usada por el NativeArray
resultado.Dispose() ;

- Allocator: when a programmer creates a hew
NativeContainer variable, they need to specify the
type of memory allocation they will need, which
depends on the length of time the job takes to
execute, so that the allocation can be adjusted to
achieve the best performance in each case. There are
three types of Allocator for allocating and releasing
memory for NativeContainer variables, and the
programmer simply needs to specify which type of
Allocator to use when creating the variable.

- First, there is Allocator.Temp, which is the fastest
and shortest-lived allocation (one frame or less).

- Secondly, there is Allocator.TempJlob, whose
allocation is slower than Temp but faster than
Persistent, and is used for allocations with a
lifetime of approximately four frames (in addition
to being thread-safe). If Dispose() is not executed
to release memory within those four frames, a
warning is printed in the console. It is the most
commonly used allocation for small or simple jobs.

- Third and lastly, we have Allocator.Persistent,
which is the slowest allocation but can last the
entire lifetime of the program if necessary. It is the
most commonly used allocation for longer jobs and
should not be used when performance and
execution are critical.

- JobHandle: They manage the execution of jobs and
make them depend on each other when it comes to

running.
It has the property IsCompleted which will return
false if the indicated job is still running or true if

that job has already finished its execution. This
allows one job to depend on the results of another,
thus being able to pass the results of the first job as a
parameter to the second job without any errors or
issues. The way to do this would be as follows:

JobHandle firstJobHandle = firstdob.Schedule () ;
seconddob . Schedule (firstJobHandle) ;

This is how the first job is created and scheduled, and
then the second job is scheduled based on when the first
job has finished.

- Run(): This is similar to Debug.Log. It is used for
debugging and verifying that everything is working
correctly using the console. By replacing Run() where
Schedule() should go, the job is executed immediately
on the main thread, allowing the code of the job to be
debugged and verified to work correctly.

public static woid Run (Job jokb) ;

WHICH OPTION IS
BEST?

COROUTINES ADVANTAGES

On the one hand, coroutines have been shown and

explained, and a point in favor of these is their quick
understanding and application, since nothing beyond a
couple of new concepts needs to be understood and
their application is extremely simple.
It is a structure that is widely used, especially for
making transitions in games that last more than one
frame, such as changing the color of an object or an
image, although they are also useful for optimizing the
program by reducing the number of function checks per
frame, as we have explained.

COROUTINES DISADVANTAGES

On the other hand, coroutines use a program flow
control class that can be confusing with concurrency
without actually being it, as all they do is suspend or
resume control of the "main thread," but they do not
take advantage of the different CPUs that a computer
has or perform any work on them. Therefore, in
conclusion, if we want to apply concurrency, coroutines
are not the option to follow.

THREADS ADVANTAGES

It has been shown the threads' greatest potential is

when used to perform computations that have a
significant time cost, dividing the algorithm into
different parts and executing each one on a processor,
thereby reducing the total execution time.
In addition, one advantage of using threads is that they
use shared memory, which although it can lead to some
errors, is also positive as they consume fewer resources
and use little memory.

Another good thing about them is that they are not
unique to Unity, unlike coroutines and jobs which are
exclusive to Unity. This makes it easier for experienced
programmers from other fields or languages to use or
learn how to implement them.

THREADS DISADVANTAGES

Against threads, it can be mentioned that they are
not as easy to implement as coroutines, and that they
can have significant problems with race conditions.
However, as we have shown, race conditions can be
solved by making correct use of locks and their
application, which, despite being somewhat more
complex, does not require a great effort for an
experienced programmer.

JOBS ADVANTAGES

Finally, we have also talked about jobs, which have
been seen as a solution to the main problems posed by
threads (race conditions and use of shared memory) and
which also run more optimally. They also stand out for
their ease of use in combination with ECS, which is a
widely seen and used system in modern video games, and
for this reason jobs, considered a "better version" of
threads, are very useful and commonly used in today's
video games.

JOBS DISADVANTAGES

However, a drawback of jobs is that their full potential is
achieved when combined with ECS, and if ECS is not going to
be used, it may be more optimal to use threads instead of
jobs. This is because when using jobs, we have to use
variables of type NativeContainer and learn how to use the
different types of Allocator. Therefore, for an experienced
programmer, the use of threads may be more intuitive, as
they are not unique to Unity and are used for multiple areas
outside of game programming.

CONCURRENCY IN UNITY

ARE THEY USE OF
REALLY USING SHARED

IMPLEMENTATION

2RI LI CONCURRENCY? MEMORY

COROUTINES LOw

THREADS MEDIUM YES YES

JOBS MEDIUM - HIGH YES YES

USE
UTILITY INSIDE
EXCLUSIVE IN SAFETY LEVEL UNITY
UNITY?
THEY DO NOT NEED A C:g::?_ﬁ AT
COROUTINES YES TO BE SAFE, NO TRULY
CONCURRENCY TAKE MORE THAN
A FRAME
DIVIDE LONG
HIGH BY CORRECTLY CALCULATIONS
THREADS NO APPLYING LOCKS, SO COMPILE TIME
LOW WITHOUT THEM IS GREATLY
REDUCED
SAME AS
HIGH WITHOUT THE THREADS, BUT
YES NEED OF LOCKS MORE EFFICIENT
TOGETHER WITH
ECS

Therefore, thanks to the numerous benefits that
threads provide to Unity game development (increased
FPS, optimal performance, ease of control and
implementation, optimal use of shared memory...), we
conclude that when using concurrency in Unity at a
general level (without using ECS), the best option is to
use threads.

WHICH OPTION IS BEST? -- 30

